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The reflection of shock waves over straight reflecting surfaces in steady flows was 
investigated experimentally using the supersonic wind tunnel of Laboratoire 
d’Aerothermique du CNRS, Meudon, France. The results for a flow Mach number 
M,, = 4.96 contradict the state of the art regarding the regular t--) Mach reflection 
transition in steady flows. Not only was a hysteresis found to exist in this transition, 
but, unlike previous reports, regular reflection configurations were found to be stable 
in the dual-solution domain in which theoretically both regular and Mach reflection 
are possible. 

1. Introduction 
As discussed by Ben-Dor (199 l), two shock-wave-reflection configurations are 

possible in steady flows, namely regular reflection (RR) and Mach reflection (MR). 
Schematic illustrations of the wave configurations of a regular and a Mach reflection, 
together with the definitions of some flow parameters, are shown in figures 1 (a) and 
1 (b) ,  respectively. 

The regular reflection (RR) consists of two shock waves, namely the incident shock 
wave, i, and the reflected shock wave, r. They meet at the reflection point, R, which is 
located on the reflecting surface. The flow states are (0) ahead of i, (1) behind it and 
(2) behind r. The angle of incidence, $,, of a regular reflection is sufficiently small so 
that the streamline deflection, 8,, caused by the incident shock wave, i, can be cancelled 
by the opposite streamline deflection, O,, caused by the reflected shock wave, r. 
Therefore, the boundary condition of a regular reflection is 

8, - = 0. (1) 
The Mach reflection (MR) consists of three shock waves, namely the incident shock 

wave, i, the reflected shock wave, r, and the Mach stem, m, and also one slipstream, 
s. They all meet at a single point known as the triple point, T. The Mach stem, m, is 
usually a curved shock wave which is perpendicular to the surface of the reflecting 
wedge at the reflection point R. The flow states are (0) ahead of i and m, (1) behind i, 
(2) behind r and (3) behind m. Unlike the case of a regular reflection where the net 
deflection of the streamlines is zero, in the case of a Mach reflection the net deflec- 
tion of the streamlines is non-zero, in general, and the streamlines behind the triple 
point are directed towards the reflecting wall. Since the streamlines on both sides 
of the slipstream must be parallel to each other, the boundary condition of a Mach 
reflection is 

(2) 0, - 0, = e3. 
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FIGURE 1. Schematic illustration of the wave configurations of (a) regular reflection and (b)  Mach 
reflection. i, incident shock wave; r, reflected shock wave; m, Mach stem; s, slipstream; R, reflection 
point; T, triple point; and $z, angles of incidence of i and r, respectively; O,, O2 and H,, flow 
deflections while passing through i, r and m, respectively; wi and w,, wave angles of i and r, 
respectively. Note that for both configurations oi = and w, = # 2 - H 1 .  

It should be noted here that equations (1) and (2)  are based on local considerations 
in the vicinities of the reflection point of an RR and the triple point of an MR, 
respectively. In order for these conditions to be global, the discontinuities, i.e. shock 
waves and slipstreams, must be straight so that the flow regions bounded by them are 
uniform. 

Graphical solutions in the pressure-deflection plane (i.e. the (P, 0)-plane) have been 
traditionally used to illustrate and better understand the shock wave reflection 
phenomenon, in general, and possible RR c, MR transition criteria, in particular. 
Examples of five different I-R polar combinations for increasing values of are 
shown in figures 2(u-e). The loci of all the pressures achievable from the free stream 
of state (0) via an oblique shock wave deflecting the flow through an angle 0 are given 
by the I-polar. Thus, state (1) in figures 1 (a) or 1 (b) maps into point (1) in figures 
2(a-e). The loci of all the pressures achievable from the free stream of state (1) via 
an oblique shock wave deflecting it by an angle 0 are given by the R-polar. 

The boundary condition of a regular reflection, given by equation (l), implies that 
the solution of a regular reflection in the (P, @-plane is at the point where the R-polar 
intersects the P-axis. Two such points are obtained by the I-R polar combination 
shown in figure 2(a). It is an experimental fact that the one resulting in the higher 
pressure (marked by an open circle in figure 2a) is unstable. Li (1995) showed recently 
that the higher-pressure solution violates the principle of minimum entropy production. 
This fact might be used to conclude that the strong solution is aphysical. Consequently, 
state (2)  of figure 1 (a) maps into point (2)  in figure 2(a).  

The boundary condition of a Mach reflection, given by equation (2), implies that the 
solution of a Mach reflection is at the point where the I and R polars intersect. Such 
a point is indicated by the I-R polar combination shown in figure 2(e).  States (2) and 
(3) of the Mach reflection, shown in figure 1 (b), map into that point. Note that state 
(2) is on the R-polar and state (3) is on the I-polar. 

Three intermediate I-R polar combinations are shown in figures 2(&d). If one 
starts with initial conditions, i.e. M, and (where M,, is the flow Mach number and 
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FIGURE 2.  Various I-R polar combinations illustrating (a) a regular reflection, (b) the von Neumann 
criterion (also known as the mechanical equilibrium criterion), (c) regular and Mach reflection for the 
same initial conditions, ( d )  the detachment criterion, and (e) a Mach reflection. 

C$l is the angle of incidence), appropriate to the regular reflection whose solution is 
presented by the I-R polar combination shown in figure 2(a) ,  and then increases the 
angle of incidence C$l while keeping the uniform flow Mach number, M,, constant, the 
I-R polar combination shown in figure 2(b)  is eventually reached. Since for this 
combination the R-polar intersects both the P-axis and the I-polar, both RR and MR 
are theoretically possible at this intersection point. Furthermore, this I-R polar 
combination represents a possible condition for the R R t ,  MR transition. This 
possible transition, which was first suggested by von Neumann in the early 1940s (see 
von Neumann 1963) was re-introduced by Henderson & Lozzi (1975) who called it the 
‘mechanical equilibrium ’ criterion. It is known nowadays as the von Neumann criterion 
and can be formulated by combining equations (1) and (2)  to read 

el-e, = e, = 0. (3) 

As can be seen in figure 2(b) the Mach stem in the vicinity of the triple point is 
normal to the oncoming flow. The incident shock wave angle appropriate to the I-R 
polar combination shown in figure 2(b)  will be denoted as w y .  Note that for wi < w y  
a Mach reflection is impossible, hence WN is the smallest incident shock wave angle for 
which a Mach reflection is possible for a given flow Mach number M,. 
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FIGURE 3. Domains of possible reflection configurations in the (Mo,  w,)-plane at y = 1.4. wt = wf and 
wt = w;" are the transition lines corresponding to the detachment and von Neumann criteria, 
respectively. 

A further increase in the incident shock wave angle eventually results in the I-R 
polar combination shown in figure 2(d)  which, in fact, corresponds to the largest value 
of wi for which a regular reflection is obtainable for a given flow Mach number Ma. 
Note that an increase of wi beyond the value appropriate to that of figure 2(d )  results 
in a situation similar to that shown in figure 2(e), in which the R-polar does not 
intersect the P-axis and hence a regular reflection is impossible. Consequently, the 
I-R polar combination of figure 2 ( d )  represents another possible condition for the 
RR t) MR transition. The possible transition, which was also suggested by von 
Neumann (1963), is known as the detachment criterion because it corresponds to the 
case in which the streamline deflection through the reflected shock wave is 
maximal. Its mathematical formulation is 

ol--o; = 0, (4) 

where 0; is the detachment deflection angle. The incident shock wave angle appropriate 
to the I-R polar combination shown in figure 2(d )  will be denoted as w4. Note that for 
wi > w: a regular reflection is impossible, hence 04 is the largest incident shock wave 
angle for which a regular reflection is possible for a given flow Mach number Ma. 

Based on the foregoing discussion, for all the incident shock wave angles in the range 

Wf d wi d 0; 

both regular and Mach reflections are possible. A typical I-R polar combination 
appropriate to this dual-solution domain is shown in figure 2(c). The point where the 
R-polar intersects the P-axis indicates a possible RR solution, while the point where 
it intersects the I-polar indicates a possible MR solution. 

It should be noted here that since both RR and MR are possible for the dual- 
solution domain given by @' < wi < w;, the RR t) MR transition could occur at any 
value of wi inside that range. Consequently, the von Neumann criterion, wi = w?, is the 
lowest possible value of wi for transition, while the detachment criterion, i.e. wi = of, 
is the largest possible value of wi for transition. 

It should also be noted here that while transition at angles of incidence in the range 
W? < wi < wf involves a sudden pressure change behind the reflected shock wave (i.e. 
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FIGURE 4. The I-R polar combination corresponding to point K is figure 3 .  

positive for the MR+RR transition and negative for the RR-tMR transition), a 
transition at wi = WN is continuous as far as the pressure behind the reflected shock 
wave is concerned. 

The dual-solution domain for which both regular and Mach reflections are possible 
in the (M,,, w,)-plane is shown in figure 3 for y = 1.4, where y is the ratio of the specific 
heat capacities. The detachment (wi = wf) and the von Neumann (wi = r$) criteria 
divide the (M,,,w,)-plane into three domains: a domain in which only RR is 
theoretically possible (w, < w y ) ,  a domain in which only MR is theoretically possible 
(wi > wf), and a domain in which both RR and MR are theoretically possible 

While the detachment criterion exists for all values of Mo > 1, the von Neumann 
criterion does not exist in the range Mo < 2.20. The point M,, = 2.20 is the point, 
marked by K in figure 3, where the two transition lines arising from these two 
transition criteria meet. Traditionally, it has been used to distinguish between weak and 
strong incident shock waves. The I-R polar combination appropriate to the conditions 
of point K is shown in figure 4. 

(wf < wi < w f ) .  

The RR c) MR transition - state of the art 
Hornung & Robinson’s (1982) conclusions have been accepted in the scientific 
community as the state of the art regarding the RR t) MR transition in steady flows. 

Based on their own experiments, as well as those of Henderson & Lozzi (1975, 1979) 
and Hornung & Kychakoff (1977), they concluded that ‘.. .in steady flow, the 
transition from regular to Mach reflection of strong shock waves [i.e. Mo > 2.201 
occurs at the von Neumann condition [i.e. wi = wN] and not at the detachment 
condition [i.e. wi = ~ f ]  . . . ’ as has been mentioned in well-known textbooks such as 
Liepmann & Roshko (1957), Landau & Lifshitz (1987) and Anderson (1982). 

The above conclusion reached by Hornung & Robinson (1982) was based on 
experiments which they conducted in the range 2.8 < M, < 5 where, as can be seen 
from figure 3, the difference between the transition lines appropriate to wi = and wi 
= wf is sufficiently large for clearly distinguishing between them. 

Based on their lengthscale concept Hornung, Oertel & Sandeman (1 979) hypoth- 
esized that a hysteresis should exist in the RRt )  MR transition. Consider figure 3 and 
assume that one starts with an MR at mi > wf and then slowly decreases wi while Mo is 
kept constant. As a result, the Mach stem height decreases until it vanishes at wi = WN 
where a smooth transition from MR to RR takes place. If the decrease in wi 
continues, then RR is maintained. If now w, is slowly increased, then, since the flow 
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FIGURE 5. Schematic illustrations on the possible hysteresis in the RR-MR transition: (a) in 
the (q, [,)-plane, and (b)  in the (w6, +plane ( M ,  = 4.96 and y = 1.4). 

field is free of significant disturbances, the RR should be maintained until wi = wf 
where a sudden transition from RR to MR should occur. The above-suggested 
hysteresis loop is shown in the (wi, im)- and the (wi, w,)-planes in figures 5 (a) and 5 (b), 
respectively; wi and w, are the angles which the incident and reflected shock waves 
make with the horizontal axis as shown in figures 1 (a) and 1 (b), and 1, is the Mach 
stem height. Hornung & Robinson’s (1982) experimental attempts to confirm their 
hypothesis regarding the hysteresis in the RR-MR transition failed and they 
concluded that ‘the hysteresis effect predicted by Hornung et al. (1979). . . could not 
be confirmed’. For this reason they refer to the RR in the dual solution domain, 
wN < wi c w,D, as an unstable regular reflection. 

The following summarizes the state of the art regarding the RR t, MR transition of 
planar shock waves in steady flows over straight wedges: 

(i) the RR+MR and the MR-tRR transitions occur at the von Neumann 
condition, i.e. at wi = w:; 

(ii) the RR in the dual-solution domain, i.e. wN < wi < of, is unstable; 
(iii) a hysteresis phenomenon does not exist in the R R o M R  transition. 
It is very important to note here that the above conclusions were based on two sets 

of experiments, one of which was conducted by Henderson’s research group and the 
other by Hornung’s, and there were no experimental reasons to doubt these 
conclusions. However, in a recent analytical study, Li (1995) showed, by applying 
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FIGURE 6. Schematic illustration of the domain of stable RR configurations in the (M,,, w,)-plane 
at y = 1.4. The RR i s  stable for wi < u:. 

the principle of minimum entropy production that, contrary to Hornung & 
Robinson’s (1982) conclusion, the RR in most of the dual-solution domain, 
w r  < wi < wp, is stable. 

Figure 6 is based on figure 3. In addition to the wi = w r  and wi = wf transition lines 
it also includes the curve wi = w t .  The domain wi < wf satisfies the principle of 
minimum entropy production. This fact might be used as an indication that RR wave 
configurations are physical in that domain. Note that the wi = w a  line is located very 
close to the wi = w 4  line. Consequently, of the entire w: < wi < wp domain for which 
RR is theoretically possible, only in a very narrow domain, w: < wi < wf, is RR 
aphysical. 

For this reason it was decided to conduct a detailed experimental investigation of the 
R R t ,  MR transition of planar shock waves over straight reflecting surfaces in steady 
flows in an attempt to establish a stable regular reflection inside the dual-solution 
domain, WN < wi < wf. As will be shown subsequently, not only did we succeed in 
achieving this goal, but our experimental results contradict the above-listed three 
conclusions, which constitute the state of the art regarding the R R t ,  MR transition in 
steady flows. Consequently, we propose a different transition criterion which, to the 
best of our knowledge, agrees with all the relevant available experiments. 

2. Present experimental study 
2.1. The experimental facility 

The experiments were conducted on the SH2 supersonic wind tunnel of Laboratoire 
d’Aerothermique du CNRS, Meudon, France. The SH2 wind tunnel is an open jet 
continuous facility. The wind tunnel run time is virtually infinite. The diameters of the 
exit and the jet sections are 127 mm and 120 mm, respectively. The ratio between the 
area of the exit and the throat sections is 25. Consequently, the flow Mach number in 
the test section based on inviscid theory was designed to be exactly M, = 5. However, 
owing to viscous effects the actual flow Mach number was M ,  = 4.96. This value was 
maintained within a variation of less than 1 % along a jet length of about 200 mm. The 
stagnation pressure and temperature were pt = 8.5 bar and = 453 K, respectively. 
These conditions give a Reynolds number per unit length of 1.3 x lo’ m-’. The mass 
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FIGURE 7. Schematic illustration of the test section and the experimental set-up used in the 
present experimental study. 

flow rate was 0.76 kg s-l. Two stage compressors, MPR-RC300, supplied the air at a 
pressure of 10 bar. The flow was heated up to a stagnation temperature of = 453 K 
to avoid liquefaction during the expansion in the nozzle. 

A group of MPR-P600 and MPR-P1000 pumps maintained a pressure of 10 mmHg 
(below the static pressure of the supersonic jet) inside the chamber enclosing the 
supersonic jet. When models were not used the pressure inside the chamber was 
4 mmHg. 

A schematic illustration of the experimental model inside the chamber is shown in 
figure 7. In order to avoid possible boundary layer influence on the R R H M R  
transition double-wedge models in a symmetrical configuration were used. Note that, 
as argued by Hornung & Robinson (1982), this configuration could not avoid the 
viscous growth of the shear layers on both sides of the slipstream; these were 
considered by Ben-Dor (1987). However, since this shear layer is associated with an 
MR it is the authors' belief that if it has any effect on the RR + MR transition the effect 
is minimal. It could, however, affect the opposite MR --f RR transition. The double- 
wedge model did not span the cross-section of the supersonic jet. This set-up was 
chosen in order to avoid the interaction of the shock waves with the sidewall boundary 
layers. The model formed a two-dimensional converging nozzle which was terminated 
by a throat formed by the trailing edges of the reflecting wedges. Because the model did 
not span the tunnel test section, air could be ejected from it sideways, particularly near 
the throat. It is believed that this mechanism stabilized the wave system which 
developed. Note that a similar set-up was used in Henderson & Lozzi's (1975, 1979) 
investigations. 

Both the upper and the lower reflecting wedges were connected to an electric motor 
which could place the plates at any fixed angle or could continuously rotate them with 
a rate of rotation of about 0.57" s-l. The two wedges were mounted on a rotational 
mechanism which kept the inlet cross-section, bin, constant during the rotation. 

In addition, the wedges could be tilted sideways by 90" and thereby completely 
removed from the jet section. The reason for enabling this degree of freedom is given 
subsequently. 
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Colour schlieren photography was employed to record the reflection phenomenon 
both with still (single shot) and continuous (video) cameras. 

2.2. The experimental procedure 
When the wind tunnel was started the wedges were placed outside the test section (i.e. 
the jet section). After a constant flow was established and the nominal conditions were 
obtained the wedges were brought into the flow one after the other. Then the hysteresis 
experiments were carried out in the following two manners. 

Discrete variation of the wedge angle 
The wedge angles were set to a succession of prescribed values ranging from small 

angles which resulted in regular reflections, to larger angles which resulted in Mach 
reflections, and then from large to small values. For each position a video picture was 
digitized, stored in a computer, then printed and evaluated. The time interval between 
two picture acquisitions was typically three minutes which was much larger than the 
flow establishment time. Consequently, there was no doubt that at each position a true 
steady flow was established over the wedge. 

Continuous variation of the wedge angle 

and a video movie was recorded. 
The wedge angles were changed continuously at a very slow rate of about 0.57" s-l 

2.3. Experimental results 
The RR f-f MR transition 

The first set of experiments was aimed at determining the conditions under which the 
RR c+ MR transition occurred. 

Initially an MR at wi z 40' (recall that in all the experiments M ,  = 4.96) was 
established. Then the angles of attack of the two reflecting wedges were simultaneously 
and continuously decreased at a rate of about 0.57" s-l. As a result, the wave angles, 
wi, of the incident shock waves decreased. This resulted in a continuous decrease in the 
height of the Mach stem until a situation in which the Mach stem completely vanished 
was reached. The video movie clearly indicated that the MR + RR transition was 
completely smooth. The point where this occurred was defined as the experimental 
MR -+ RR transition point. 

The angles of attack of the reflecting wedges were then further decreased until the 
wave angles of the incident shock waves reached values of wi Q 30" which, as can be 
seen in figure 3, are well inside the domain in which, theoretically, only RR was 
possible. Then the direction of the rotation of the wedges was reversed and their angles 
of attack were simultaneously and continuously increased. 

While increasing the angles of attack it was observed that the RR wave configuration 
was not terminated at the earlier determined MR + RR experimental transition point. 
Instead the RR wave configuration was maintained for some time until it suddenly 
changed to an MR. The point where this occurred was defined as the experimental 
RR -+ MR transition point. The height of the Mach stem of the suddenly formed MR 
was definitely non-zero. 

The above-described experimental results are shown in figure 8 in the (wi, w,)-plane 
for hi, = 9 cm and wedge surface length w = 6 cm. MR wave configurations are 
marked with triangles and RR wave configurations are marked with circles. The von 
Neumann and the detachment transition angles for M ,  = 4.96 are w r  = 30.88' and 
wp = 39.33', respectively. 
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FIGURE 8. The present experimental results in the (w,,w,)-plane: A ,  MR configurations; 0, RR 
configurations. The hysteresis phenomenon in the RR +-+ MR transition is clearly evident. 

The hysteresis phenomenon in the RR-MR transition which was shown 
schematically in figure 5 (b) is clearly evident in figure 8. While the MR --f RR transition 
took place at the von Neumann angle, i.e. wI'(MR-+ RR) = WN = 30.9', the reverse 
transition, the RR -+ MR transition, occurred at about w? (RR + MR) = 37.2'. Thus, 
it is clear that the hysteresis phenomenon which was hypothesized by Hornung 
et al. (1979) and up to now has not been confirmed experimentally does exist in the 
RR-MR transition in steady flows. It should be noted here that the hysteresis 
was also evident in the experiments in which the wedge angles were changed in 
discrete steps. 

Note also that the experimental results shown in figure 8 are consistent with the 
general transition criteria which were put forward recently by Li (1995). 

The dependence of the transition on geometrical parameters 

In order to investigate the effect of the geometrical set-up (i.e. lengthscale effect) on 
the transition process, experiments similar to the one mentioned above were repeated 
for three different reflecting wedge surface lengths, w (50, 60 and 70mm). Each 
reflecting wedge was tested with three different combinations of inlet cross-sections, hi, 
(about 70, 85 and 100 mm). In seven out of the above nine possible combinations of 
w and h,, both the RR -+ MR and the MR -+ RR processes were recorded by setting the 
reflecting wedge angles to a succession of prescribed values. For each angle the video 
picture was digitized, stored in the computer, printed and evaluated. The experiments 
were also repeated while taking a continuous movie record. The results of these 
experiments, which are shown in figure 9, again verify the above-mentioned hysteresis 
phenomenon in the transition process. All the open symbols in which the MR+ RR 
transition was investigated show transition in the vicinity of the von Neumann 
transition angle ON. On the other hand, all the solid symbols in which the RR-t MR 
transition was investigated indicate that the transition occurs between the von 
Neumann, ON, and the detachment, uf, transition angles, in the vicinity of oi = 37'. 
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FIGURE 9. The present experimental results for the nine combinations of w and h,, in the (w j ,  w,)-plane. 
Open symbols M R +  RR process. Solid and x symbols RR+ MR process. 0, ., w = 50 mm, h,, 
= 99.5 mm; A, A, w = 50 mm, 85.2 mm; V, w = 50 mm, hi, = 69.6 mm; D, b, w = 60 mm, h,, = 
9 9 . 5 m m ; ~ , ~ , w = 6 0 m m , h , , = 8 5 m m ; ~ , ~ , w = 6 0 m m , h j , = 6 9 . 8 m m ; O , ~ , w = 7 0 m m ,  
hi,t = 99.5 mm; 0, 0 ,  w = 70 mm, h,, = 85 mm; x , w = 70 mm, hi, = 69 mm. 

In addition, it is clearly indicated in figure 9 that the RR + MR transition depends 
slightly on both the inlet cross-section, hi,, and the reflecting wedge surface length, w. 

The stability of regular and Mach reflections 
The stability of both regular and Mach reflection wave configurations inside the dual 

solution was examined in the following way. The experiment in which the wedge angle 
was changed in discrete steps was repeated. The change in the wedge angle between two 
successive positions was about 1". At each position the holding arm of the lower wedge 
(of the two symmetrical wedges) was tilted sideways by 90" and completely removed 
from the flow field. This resulted in a situation in which only an oblique straight shock 
wave emanating from the leading edge of the upper wedge was left in the flow field. At 
this stage the lower wedge was brought back to its original position and the flow was 
allowed to reach its steady conditions. It was found that there is a critical incident 
shock wave angle value, say w y ,  below which the stable reflection was found to be RR 
and above which the stable reflection was found to be MR. For the wedge with hi, = 
9 cm and w = 6 cm, for which results are shown in figure 8, it was found that w y  !z 
35.5". Consequently, from a stability point of view the dual-solution domain can be 
divided into two sub-domains: RR wave configurations are stable in the sub-domain 
w y  < wi < w y ;  MR wave configurations are stable in the sub-domain wir < wi < w:r 
(RR+MR). Owing to the fact that o;'(RR+MR) was found to depend on 
geometrical parameters, i t  is hypothesized here that wt' also depends on the geometrical 
parameters associated with the experiment. 

The fact that RR wave configurations were established in spite of the very large 
disturbance associated with this experimental procedure contradicts the conclusion of 
Hornung et al. (1979) that inside the dual-solution domain large disturbances should 
be sufficient to cause the reflection to be an MR rather than an RR. 
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FIGURE 10. Dependence of the height of the Mach stem of a Mach reflection on the wave angle 
of the incident shock wave, for (a) hi, = 9 cm, and (6) hi, = 10 cm. For both cases w = 6 cm. 

Some further notes regarding the hysteresis 
Consider figures 10(a) and 10 (b) where the dependence of the non-dimensionalized 

Mach stem height lm /w  (1, is the height of the Mach stem and w is the length of the 
reflecting wedge) on the angle of incidence of the oncoming flow wi is shown for two 
different inlet cross-sectional areas hi,. The solid lines are least-square fits to second- 
order polynomials. As can be seen the value of wi at the point where the fitted curves 
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FIGURE 11. The actual hysteresis loop in the (q, /,)-plane, for h, = 9 cm and w = 6 cm indicated 
by the experiments shown in figure 10(a). 

approached I,+O is exactly equal to the von Neumann angle w y .  Hence, based on 
figures lO(a) and 10(b) there is little doubt that the MR+ RR transition occurs at the 
von Neumann angle, i.e. w? (MR + RR) = w y .  Furthermore, the transition angle 
seems to be independent of the inlet cross-sectional area hi,. In addition, the possible 
effect of the viscous growth on both sides of the slipstream on the MR --f RR transition 
seems to be negligible. 

It should be noted here that unlike Hornung & Robinson's (1982) experimental 
results where [,/w was found to depend linearly on the incident shock wave angle w,, 
the present results reveal a nonlinear dependence. The reason for this difference lies 
simply in the fact that Hornung & Robinson's (1982) experiments were limited to a 
relatively narrow range of w,. For example, in their experiments with M ,  = 5 the 
investigated wi domain was 30.8" = WN < wi < 34". Our results in this narrow domain 
also resemble a linear dependence (see the dashed lines in figures 10a and lob). 
However, when the entire range of 30.9" = w; < wi < wf = 39.3" is considered, a clear 
nonlinear dependence of I ,  on wi is evident. It should also be noted here that Azevedo 
& Liu (1993) in their ingenious attempt to analytically predict the Mach stem height 
of MR wave configurations in steady flows, also obtained a nonlinear dependence of 
1, on w,. Their analytical curves are similar to those shown in figures 10(a) and lO(b). 
The actual hysteresis loop in the (Z,, @,)-plane is shown for the readers' convenience in 
figure 11. Note that unlike the loop shown in figure 5(b), here I, does not decrease 
linearly with wi and the RR + MR transition takes place at w, z 37.2" rather than at 

Schlieren photographs of the RR and MR wave configurations illustrating the 
above-mentioned hysteresis phenomenon are shown in figure 12. Figure 12(a) shows 
an MR at wi z 42" > wp. When wi was decreased the MR was maintained as shown in 
figure 12(b) where < wi !z 34.5" < wf. When wi decreased below w y  an RR was 
obtained as shown in figure 12(c) for wi z 29.5" < w y .  When the process was reversed 
and wi was increased beyond w? to a value of W; < wi x 34.5" < wf, the reflection was 
RR as shown in figure 12(d). Note that the MR shown in figure 12(b) and the RR 
shown in figure 12(d) had practically the same initial conditions, i.e. M ,  = 4.96 and 
wi z 34.5". The fact that both of them were stable clearly verifies the fact that a 
hysteresis exists in the transition phenomenon. When wi further increased, the 
RR suddenly terminated and an MR was formed as shown in figure 12(e) 
where w, z 37.5" < wp. 

The above-described experimental results also contradict the Henderson & Lozzi 
(1975) conclusion that the RR+ MR transition should occur at the von Neumann 

w .  z a  = wD = 39.3". 
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FIGURE 12. Schlieren photographs of (a) MR at wi e 42", (b) MR at wi  = 34.5", 
(c) RR at oi e 29.5", ( d )  RR at w, e 34.5", and (e) MR at wi e 37.5". 

condition, i.e. oi = w:, 'in such a way that mechanical equilibrium of the system is 
preserved through the process'. The sudden transition from RR to MR at wi > ON 
occurred a t  a point where the mechanical equilibrium requirement was clearly not 
fulfilled. 
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3. Conclusions 
An experimental investigation regarding the RR c) MR transition in steady flows 

revealed the following facts : 
(i) A hysteresis exists in the RR t+ MR transition. While the MR + RR transition 

occurs at the von Neumann criterion, i.e. wir (MR +- RR) = w r ,  the reverse transition, 
i.e. the RR-t MR transition, can occur anywhere inside the dual-solution domain 
w r  < w:' (RR + MR) ,< wf. The exact point at which the RR + MR transition takes 
place depends probably on geometrical parameters associated with the experimental 
facility in which the experiments are carried out and the specific experimental set-up. 
It is possible that the experimental facilities and set-ups used by both Hornung and 
Henderson in their experimental investigations were such that the RR -t MR transition 
in their facilities occurred at or near the wi = WN point. For this reason they failed to 
obtain stable RR wave configurations in the dual-solution domain and to observe the 
hysteresis phenomenon associated with the RR c* MR transition. 

It should be mentioned here that by using curved reflecting wedges Henderson & 
Lozzi (1979) also obtained a hysteresis phenomenon in the RR c) MR transition. Their 
results are reproduced in figure 13. A comparison of their results which were obtained 
with curved reflecting wedges with our results which were obtained with straight 
reflecting wedges (see figure 8) indicates that, while their hysteresis loop takes place at 
wi < w r ,  ours occurs at wi > wN. Furthermore, their attempt to record a hysteresis 
phenomenon with straight wedges, similar to that recorded by us, failed. It should also 
be noted here that Ben-Dor, Takayama & Kawauchi (1980) recorded experimentally 
a similar hysteresis phenomenon when planar shock waves reflected over concave and 
convex cylindrical wedges. Their experiments revealed that : 

w:'(MR+-RR) = WN and w:'(RR+MR) = wp. 

(ii) For the geometrical parameters of the wind tunnel and of the wedges and the 
experimental set-up used in the present study wir (RR + MR) = 37.2" & 1.5" (recall that 
M ,  = 4.96). This violates Henderson & Lozzi's (1975) argument that the transition 
should occur at a point where mechanical equilibrium is preserved. 

(iii) It was found that there is a critical value, w y ,  below which RR wave 
configurations are stable and above which MR wave configurations are stable. These 
results contradict Hornung et al.'s (1979) explanation that if through some disturbance, 
for example, during the tunnel starting process, a Mach reflection is temporarily 
established in the WN d wi 6 wf domain, it will be stable. Consequently, either their 
'lengthscale' concept is violated by the present experimental results or the large 
disturbances introduced by us were not sufficient to set up a temporary Mach reflection 
which is a condition for obtaining a stable MR in the dual-solution domain. 

(iv) For the geometrical parameters of the wind tunnel and of the wedges and the 
experimental set-up used in the present study wf z 35.5"k 1". 

In summary, the experimental results which are presented in this paper contradict 
the state of the art regarding the RR c) MR transition in steady flows. However, they 
completely agree with the general analytical transition criteria which were suggested 
recently by Li (1995). 

It should be noted here that based on their lengthscale concept Hornung et al. (1979) 
concluded that ' in steady or pseudo-steady flow, transition to Mach reflection occurs 
at that angle atr > czN [i.e. w 7  (RR + MR) 2 4'" at which conditions change in such 
a way as to open an information path enabling the communication of a length scale 
to the reflection point '. Unfortunately, the geometrical parameters of their exper- 
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FIGURE 13. Henderson & Lozzi's (1979) experimental results over curved reflecting surface in the 
(q, w,)-plane: A, MR configurations; 0,  RR configurations. 
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imental facility and set-up, which was later used by Hornung & Robinson (1982), 
were such that the RR + MR transition occurred near or at the WN point. As a result, 
Hornung & Robinson (1982) mistakenly concluded that w:'(RR+ MR) = w;. 
Based on the present experimental results the transition criteria in steady flows are 
uir (MR + RR) = WN and W; d (RR + MR) < wp. 

It should be noted here that Azevedo (1989), who obtained Hornung & Robinson's 
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(1982) raw experimental data, showed that the presence of downstream influences at 
the triple point caused an increase in the height of the Mach stem and, as a result, 
a shift in the MR+ RR transition to values of wir (MR+ RR) < w r .  This is shown in 
figure 14 in which Hornung & Robinson's unpublished experimental results, as taken 
from Azevedo's (1989) PhD thesis, for cases with and without downstream influences, 
are shown. Note that while the results, which were free of downstream influences, 
indicated that wir (MR + RR) = 31" % w r ,  the results for which downstream influences 
were present indicated that wir(MR+ RR) % 28.5" < w r  = 30.9". Consequently, it 
could be concluded that the MR+ RR transition occurs at the von Neumann point, 
i.e. (MR+ RR) = WN provided the reflection is free of downstream influences. The 
fact that Hornung & Robinson (1982) obtained MR wave configurations for values of 
wi < w r  where, based on the three-shock theory for inviscid flows, MR wave 
configurations are impossible, is yet to be explained. 

The authors would like to thank Dr Jean Claude Lengrand, Head of Laboratoire 
d'Aerothermique du CNRS, Meudon, France, for his encouragement and constructive 
remarks throughout the course of this study. 
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